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elegant derivation of the likelihood ratio criterion for testing the hypothesis
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analytically and complete the W & X derivation.
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The Degrees of Freedom of the X -test of Dimensionality
A. M. Kshirsagar
Southern Methodist University
Dallas, Texas 75222
1. INTRODUCTION: Wani and Kabe (abbreviated as W & K hereafter) [2]
have recently given an elegant derivation of the likelihood ratio cri-~
terion for testing the hypothesis Ho that the dimensionality of the
space of the means of k p-variate normal populations is s . The main
difference between their derivation and the one given in Rao [1l] is
that Rao uses geometrical termincology while W & K's derivation is com-
pletely analytical. However, their proof is incomplete without the
degrees of freedom of the x?-test. It will be a pity to be required
to go to Rao's geometrical terminology just for the degrees of freedom
(d.£f.) of the test. The object of this note is therefore to derive the
number of d.f. here analytically and complete the W & K derivation.
2. Degrees of Freedoa of the Likelihood Ratio Criterion:

We shall use the same notation as W & K and shall not reproduce
it here to economize space. The number of d.f. of the likelihood ratio
criterion is the difference between the number of parameters with
respect to (w.r.t.) which the likelihood L is maximized in the entire
parameter space (2 and the space y, restricted by the hypothesis

Hy: Hu, = £, (1=1, 2, ..., k)

o? i Tt
given by equation (1) of W & K. The number of parameters in (0 is pk,
the p means of each of the k populations. Let us now count the number

of parameters estimated while deriving max. L in w. W & K's first

step in maximizing L is equivalent to making a transformation from




W, (i =1, 2, ... K to

,g] ™ (1)
Ko

where K 1is an r xp matrix of rank r = p - s, such that HXk'=s 0, so
that the exponen'. (apart from the factor %) in g4iven by (2) of W & K,

reduces to (on u~‘ng H.),

‘\_~ -;l ‘“l-l —) 2
+ !N (K;i K ti (KLK ) (Kui ~ K Ui . (2)

i=1
This is then minimized w.r.t. Kui(i =1, ..., k) first. In other words,
we estimate the rk parameters, Kui(i =1, ... k) here. The second term
in (2) therefore vanishes, when the minimum value is taken. This step
is hidden in W & K. Next they minimize (2) w.r.t. the unknown & ie they
estimate a further s parameters. Finally, they minimize

tef (mnt) "tumn' 3, (3)
—-— - pu— l\
u.u, = kU U) , w.r.t. the unknown H, the only condition

Rl

where B = N .
. ivi
i=1

being that rank H is s. One may think here that the additional numker
of parameter estimated in this is p, the number of elements of H, but it

is not true becauze, the quantity in (3) is also equal to

tr 1t (H* T ona) lus b, (4)

where H* - AH and A i: any arbitrary non-singular s Xs matrix, and we

1
can choose 5 to be i, 7, where

ooy [T, (5)



H, being sxs, H, being sX(p -s ). H; can be assumed to be non-singular
without loss of generality, as rank i1 -s . This reduces H* to

(113, "H,) (6)

which has only s (p -s) unknown elements. Thus, the number of unknown
parameters estimated in minimizing (3) is only s (p -s). The total number
of parameters in & is therefore
rk +s +s(p -5s) (7}
and the degrees of freedom of the x2 test are
pk-(rk+s+PS-52)=lp-r)(k-1—r). (8)
3. Equation of the r-dimensional Flat:
Rao bases his derivation on the fact that the hypothesis Hy is
geometrically equivalent to the fact that the k points (representing
the means of the k populations) collapse on an r-dimensional flat and he
then proceeds to write its vectorial equation. Perhaps, it will be

instructive to demonstrate this analytically. 1If Hy is true,

HM = § Ey, (9)

where M= (U, Hyy ooy uk] (10)

and hab denotes an a X b matrix, with all unit elements. Hence HM* = O,

where M* - M(I - }). So that M* is of rank p -s = r, as H is of

2
k kk
rank s, and that its rank cannot be improved upon. M* has therefore r
linearly independent column vectors. Let us denote them by u*

i
(i =1, 2, ... r). PRut, it is casy to see from the relationship between

M and M* that the difference between any two columns of M is the same as

the difference between the corresponding columns of M* and so,



ui S Uy F (ith column of M* = 1st column of M¥*)

= 4y + a linear combination of p* (I =1, 2, ... r)
4

This is the vectucrial equation of the r-dimensional flat which Rao uses
and is determined by the (r + 1) independent points by and

LLJ*. (i:l, 2) ooy r). .
i

I am indebted to Dr. J. T. Webster, for his help and discussion.
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